

Judith Heide

University of Potsdam, Department Linguistics jheide@uni-potsdam.de

Let's meet CATE!

Aphasia and AoS interventions inspired by the Complexity Account of Treatment Efficacy

Agenda

Background

- Generalisation effects
- CATE's prediction

Two single case studies

- Semantic impairment
- Apraxia of Speech

Wrap Up

Evaluating the effectiveness of SLT

Training effects

improvement for trained material

Generalisation effects

- improvement for untrained materials and/or untrained tasks
- expansion of what has been learned

Transfer effects

improvement in an everyday situation

Generalisation effects

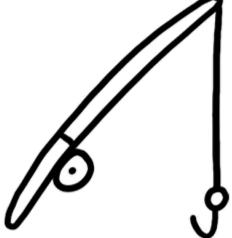
- strong evidence for the effectiveness of a treatment
- if (only if!) it is predicted <u>beforehand</u> what kind of generalisation can be expected due to the treatment
- prediction is theory-driven or evidence-based

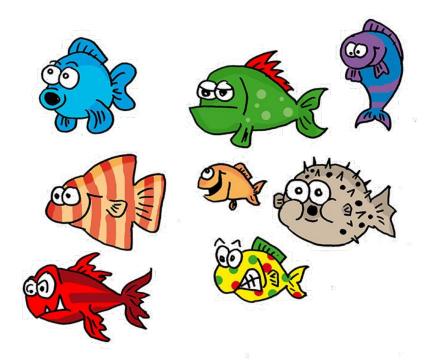
Webster J, Whitworth A, Morris J. (2015)

<u>Is it time to stop 'fishing'? A review of generalisation following aphasia</u> <u>intervention.</u>

Aphasiology

DOI: 10.1080/02687038.2015.1027169

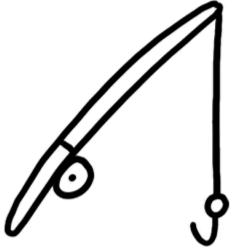


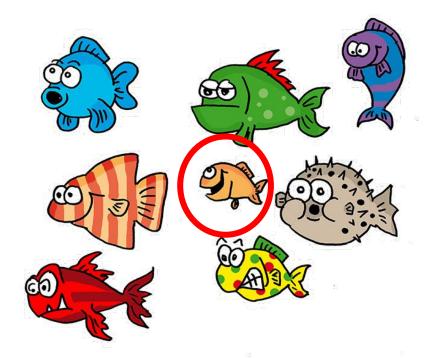

Webster J, Whitworth A, Morris J. (2015)

<u>Is it time to stop 'fishing'? A review of generalisation following aphasia</u> intervention.

Aphasiology

DOI: 10.1080/02687038.2015.1027169




Webster J, Whitworth A, Morris J. (2015)

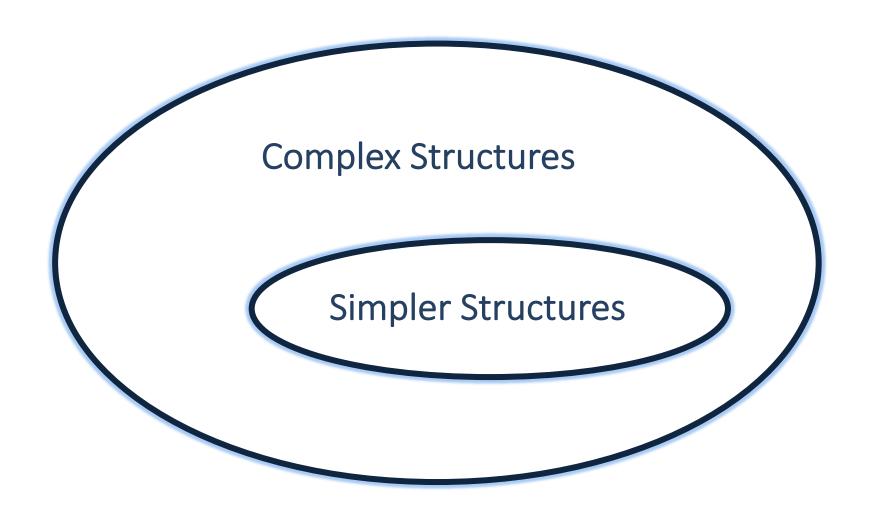
<u>Is it time to stop 'fishing'? A review of generalisation following aphasia intervention.</u>

Aphasiology

DOI: 10.1080/02687038.2015.1027169

Generalisation effects

- untrained task improves for trained items oral picture naming → naming by definition
- untrained items improve in a trained task sentence production: passive sentences \rightarrow active sentences
- untrained language improves for trained materials


Complexity Account of Treatment Efficacy

"Training complex structures results in generalization to less complex structures when untreated structures encompass processes relevant to (i.e., are in a subset relation to) treated ones." (Thompson et al., 2003, p. 11)

According to CATE

- we should use complex items for treatment
- as less complex, comparable items then improve, too
- predicted generalisation from complex to simple

Subset relation

CATE: Not intuitive, but effective!

- CATE contradicts classic didactic principles
- effectiveness has be shown for
 - agrammatism z.B. Thompson et al. 2003; Thompson et al. 2007; Stadie et al. 2008
 - semantic impairment z.B. Kiran & Thompson 2003; Kiran et al. 2009
 - apraxia of speech Maas et al. 2002; Schneider & Frens 2005
 - SLI Gierut 2007; Levy & Friedmann 2009
- learning process might be even faster with complex material

Evaluating CATE's prediction: A-B-A

A: BASELINE BEFORE

B: TREATMENT

A: BASELINE

AFTER

Evaluating CATE's prediction: A-B-A

A: BASELINE
BEFORE

B: TREATMENT

A: BASELINE
AFTER

complex items
TO BE TREATED

A: BASELINE
AFTER

TRAINING EFFECT?

Evaluating CATE's prediction: A-B-A

A: BASELINE
BEFORE

B: TREATMENT

Complex items
TO BE TREATED

Simpler items
WILL NOT BE TREATED

A: BASELINE
AFTER

Complex items
TRAINING EFFECT?

Simpler items
GENERALISATION? CATE!

CATE meets Semantic Impairment

Semantic Complexity

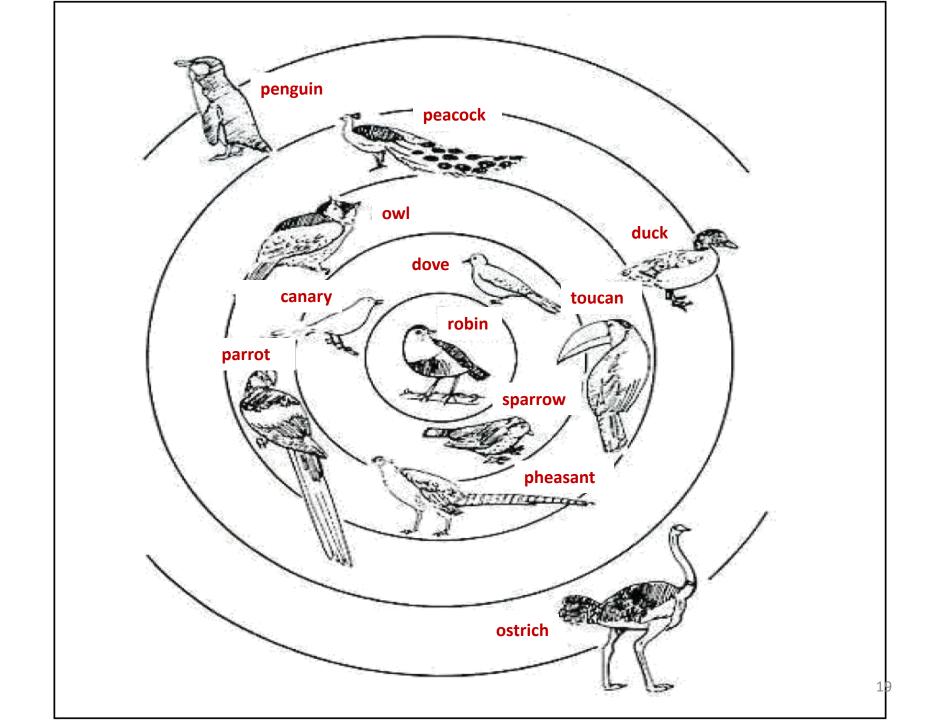
concreteness effect: abstract > concrete

• typicality effect: atypical > typical

Typicality

Typicality

Members of a category are defined by


- core features lays eggs, has a beak
- prototypical features can fly, builds a nest
- atypical features can run fast, eats fish

Typical members

- share prototypical features
- have only few distinctive features

Atypical members

- have many distinctive features
- reflect the full range of the semantic category

Single case study: Mr. A.

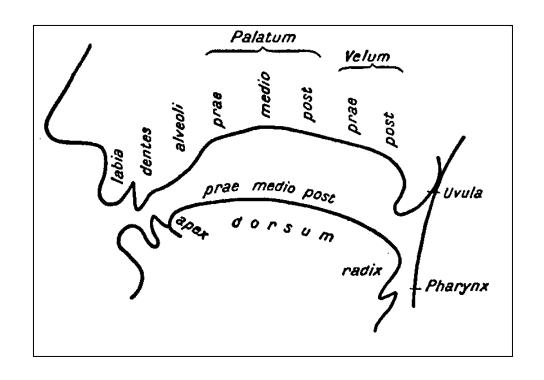
- 54 yrs old, 3;6 yrs p.o., left parietal hemorrhage
- impaired word retrieval due to a semantic disorder

Aim

- refine representation in the semantic system
- establish/stabilise semantic features
- improve naming accuracy

	ASELINE EFORE	B: TREATMENT		A: BASELINE AFTER
	cal animals E TREATED		V	atypical animals TRAINING EFFECT?
	al animals OT BE TREATED		×	typical animals GENERALISATION? CATE!
• •	I vegetables OT BE TREATED		×	atypical vegetables GENERALISATION?
• •	vegetables OT BE TREATED		×	typical vegetables GENERALISATION?

A: BASELINE BEFORE	B: TREATMENT	A: BASELINE AFTER
atypical animals 4/10		atypical animals TRAINING EFFECT?
typical animals 3/20	×	typical animals GENERALISATION? CATE!
atypical vegetables 0/10	×	atypical vegetables GENERALISATION?
typical vegetables 3/20	×	typical vegetables GENERALISATION?

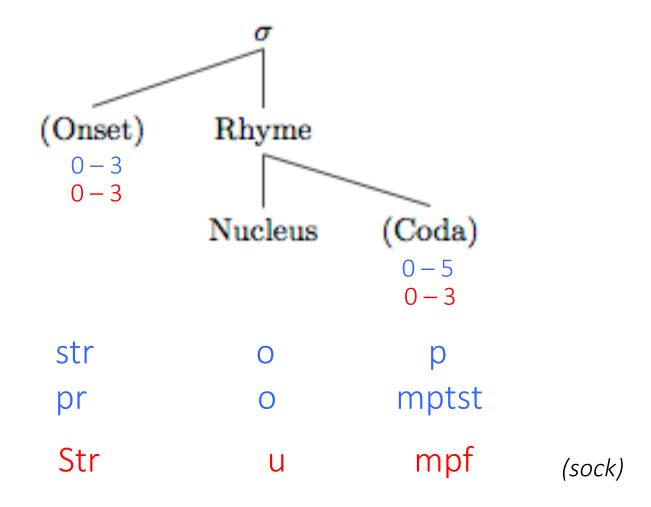

Treatment (7 sessions)

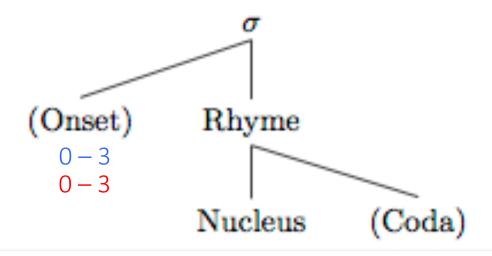
- oral naming
- semantic categorisation air or water? flat or tall?
- select semantic features
 water / green / tall / air / arms / trunk / orange / flat
- YES/NO decision on semantic features water? → yes
- oral naming

Α	A: BASELINE BEFORE		REATMENT	A: BASELINE AFTER
aty	oical animals 4/10			atypical animals 10/10*
typ	oical animals 3/20		*	typical animals 13/20*
atypi	cal vegetables 0/10		*	atypical vegetables 2/10
typical vegetables 3/20			*	typical vegetables 15/20*

- generalisation atypical → typical animals (CATE's prediction)
- cross-category generalisation to typical but not atypical vegetables

CATE meets Apraxia of Speech


clusters > singletons


• onset:

```
broek > boek
Brand > Band (fire/ribbon)
```

• coda:

```
hals > hal
Hals > Hall (neck/echo)
```


APHASIOLOGY, 2002, 16 (4/5/6), 609-622

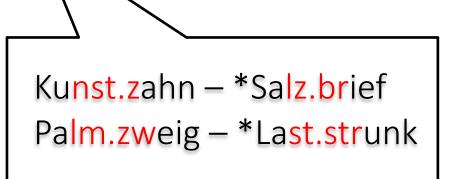
Treatment of sound errors in aphasia and apraxia of speech: Effects of phonological complexity

E. Maas, J. Barlow, D. Robin, and L. Shapiro San Diego State University, CA, USA

syllable contacts: xCCC.CCx > xV.Cx

angstzweet > autoweg

A<u>ngstschw</u>eiß > Aut<u>ob</u>ahn


Single case study: Mrs. B.

- 44 yrs old, 8 yrs p.o., left ACM infarction
- mild aphasia
- mild to moderate apraxia of speech
 - inconsistent error pattern
 - phonetic and phonological errors
 - effects of phonological complexity, lexicality, and length
 - scanning speech

Aim

- correct production of clusters
 - precise articulation
 - fluent speech

	A: BASELINE BEFORE	B: TREATMENT	A: BASELINE AFTER
	xCCC.CCx		xCCC.CCx
	xCC.CCCx		xCC.CCCx
	TO BE TREATED		TRAINING EFFECT?

	A: BASELINE BEFORE	B: TREATMENT	A: BASELINE AFTER	
	xCCC.CCx		xCCC.CCx	
	xCC.CCCx		xCC.CCCx	
	TO BE TREATED		TRAINING EFFECT?	
	xCC.CCx		xCC.CCx	
	xCCCx	×	xCCCx	
xCx			xCx	
	WILL NOT BE TREATED		GENERALISATION? CATE!	

	A: BASELINE BEFORE	B: TREATMENT	A: BASELINE AFTER	
	xCCC.CCx		xCCC.CCx	
	xCC.CCCx		xCC.CCCx	
	3/40		TRAINING EFFECT?	
0	xCC.CCx		xCC.CCx	
	xCCCx	×	xCCCx	
	xCx		xCx	
	13/60		GENERALISATION? CATE!	

Treatment (10 sessions in 5 weeks)

- repetition (w/o mouth gesture)
- assessment O O O
- ○ → embed word in sentence
- O O → practice
 - repetition (mouth gesture visible)
 - slowed presentation
 - phonetic instructions
 - backward chaining of the phonemes

Results

A: BASELINE BEFORE	B: TREATMENT	A: BASELINE AFTER
xCCC.CCx xCC.CCCx 3/40		xCCC.CCx xCC.CCCx 17/40*
xCCCCx xCCCx xCx 13/60	*	xCCCCx xCCCx xCx 27/60*

- generalisation complex clusters → simpler clusters (CATE)
- still room for improvement

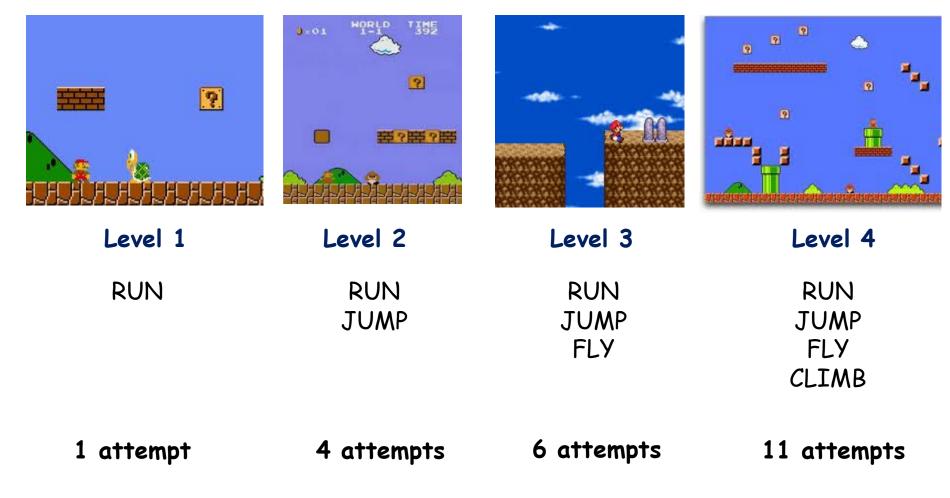
Wrap Up

Summary

- two interventions inspired by CATE
 - semantic impairment/ naming
 - apraxia of speech/ syllable contact
- generalisation: complex → simpler items
- materials based on linguistic criteria
- A-B-A intervention design for systematic evaluation

CATE@work

- theory-driven prediction on generalisation effects:
 CATE does not fish!
- material-centered account: CATE recommends how to choose and structure the items (treated vs. untreated)
- no specification of the treatment/task


- CATE challenges patients
- helpful: make treatment transparent to the patient
 - explain idea of complexity
 - set a time frame (e.g. 10 sessions)
 - announce baseline testings

Thank you!

A somewhat different example ©

1 attempt

1 attempt

1 attempt

17 attempt

Evaluating treatment effects: A-B-A

A: BASELINE BEFORE

B: TREATMENT

A: BASELINE AFTER

complex items
TO BE TREATED

complex items

complex items
TRAINING FEFFCT?

simpler items
WILL NOT BE TREATED

simpler items
GENERALISATION? CATE!

communication

TRANSFER EFFECT?

control task
UNRELATED, UNTRAINED

control task
EFEECTS DUE TO
TREATMENT?